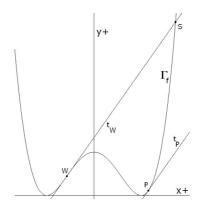
Klasse: 7D(Rg)

Mathematik bei ...

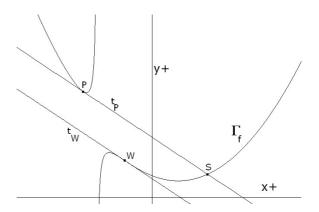
Dr. R. Resel

Weitere Übungsbeispiele zur Differentialrechnung (Teil 2):

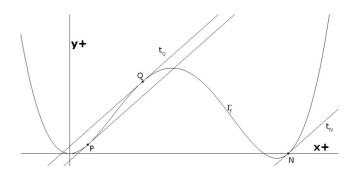
Mehr über Polynomfunktionen



1. Ausgehend von der Funktion f mit der Funktionsgleichung $y = f(x) = x^4 - 6x^2 + 9$ sind die Koordinaten jenes Kurvenpunkts P zu berechnen, in dem die Tangente t_P zur in obiger Abbildung eingezeichneten Wendetangente t_W parallel verläuft. Kontrolliere nach erfolgter Berechnung die für alle biquadratischen Polynomfunktionen gültige Formel $x_P = \frac{1}{2} \cdot (x_S - x_W)!$



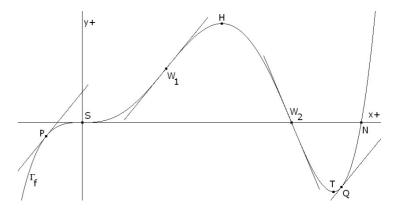
2. Ausgehend von der Funktion f mit der Funktionsgleichung $y = f(x) = \frac{x^3 + 56}{x + 4}$ sind die Koordinaten jenes Kurvenpunkts P zu berechnen, in dem die Tangente t_P zur Wendetangente t_W parallel verläuft. Berechne ferner die Koordinaten von S!



3. Gegeben ist die Polynomfunktion f mit der Funktionsgleichung

 $y = f(x) = \frac{1}{1728} \cdot \left(x^4 - 68x^3 + 1152x^2\right)$. Ermittle die Koordinaten jenes in obiger Abbildung eingezeichneten Punkts Q auf Γ_f , in welchem die Tangente t_Q parallel zur Tangente in der rechtesten Nullstelle verläuft. Stelle auch eine Gleichung von t_Q auf!

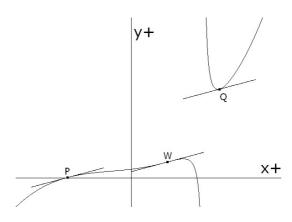
4. Zeige, dass der Graph Γ_f der rationalen Funktion $f\left[y=f(x)=\frac{x+1}{x^2+1}\right]$ drei Wendestellen $x_1,\,x_2$ und x_3 aufweist $(x_1 < x_2 < x_3)$. Lege dein Hauptaugenmerk auf den Wendepunkt $W_3(x_3|f(x_3))$ und zeige, dass es keine zur Wendetangente parallele Kurventangente gibt.



5. In obiger Figur ist der Graph der Polynomfunktion $f\left[y=f(x)=\frac{1}{512}\cdot\left(x^5-70x^4+1200x^3\right)\right]$ abgebildet.

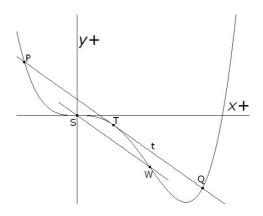
Bearbeite die folgenden Aufgabenstellungen:

- (a) Diskutiere die Funktion. Zeige, dass zwei der drei Nullstellen auch Wendestellen sind.
- (b) Berechne die x-Koordinaten jener Kurvenpunkte P und Q, in welchen die Tangenten an die Kurve parallel zur steigenden Wendetangente verlaufen. Verwende Wurzelausdrücke!

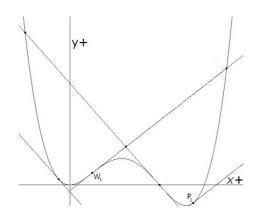


6. In obiger Figur ist der Graph Γ_f der rationalen Funktion $f\left[y=f(x)=\frac{x^4-11}{x-2}\right]$ zusammen mit einem seiner Wendepunkte abgebildet.

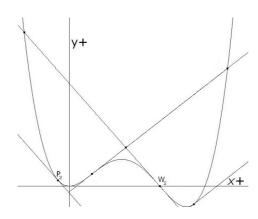
Berechne die x-Koordinaten jener Kurvenpunkte P und Q auf Γ_f , in welchen die Tangenten an die Kurve parallel zur eingezeichneten Wendetangente verlaufen. Verwende Wurzelausdrücke!



7. In obiger Figur ist der Graph der Funktion $f[y=f(x)=x^4-4x^3]$ zusammen mit seinem Sattelpunkt S und seinem (gewöhnlichen) Wendepunkt W abgebildet. Zeige, dass es drei Punkte auf $Gamma_f$ gibt, in denen die Tangente an Γ_f parallel zu g_{SW} verläuft und berechne die Koordinaten des Gitterpunkts T unter diesen drei Punkten. Zeige, dass $T=M_{PQ}$ gilt. (Zusatz: Zeige, dass für die anderen beiden Punkte $T_1(x_1|y_1)$ und $T_2(x_2|y_2)$ die Gleichung $\frac{x_1+x_2}{2}=x_T$ gilt!)

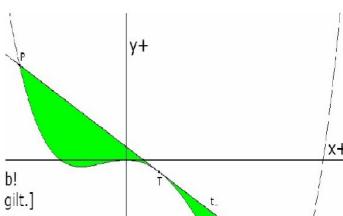


8. Ausgehend vom obig abgebildeten Graphen der Funktion $f[y = f(x) = x^4 - 20x^3 + 96x^2]$ sind die Koordinaten jenes Kurvenpunkts P_1 zu ermitteln, in dem die Tangente an Γ_f parallel zur Wendetangente t_{W_1} verläuft!

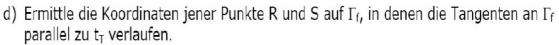


- 9. Ausgehend vom obig abgebildeten Graphen der Funktion $f[y = f(x) = x^4 20x^3 + 96x^2]$ sind die Koordinaten jenes Kurvenpunkts P_2 zu ermitteln, in dem die Tangente an Γ_f parallel zur Wendetangente t_{W_2} verläuft!
- 10. Für die folgende Aufgabe gilt: Teile a), b), d) und e) in der 7. Klasse, c) erst in der 8. Klasse!

Der nebenstehend abgebildete Graph Γ_f der Funktion f mit der Funktionsgleichung $y = f(x) = x^4 + ax^3 + bx^2$ geht durch den Punkt T(1|-15) und weist dort eine Steigung von -32 auf.



- a) Ermittle die Parameter a und b! [Zeige, dass (a|b)=(-4|-12) gilt.]
- b) Zeige, dass für die Schnittpunkte P und Q der Tangente t_T an Γ_f in T die Beziehung $T=M_{PQ}$ gilt.
- c) Berechne den Inhalt F des gefärbten Gebiets und nimm zu den Aussagen F=1296·√2/5 bzw. F=14296/39 Stellung!



e) Berechne den Schnittpunkt von t_R und $t_S!$ Was fällt dir auf? Begründe dies!

Wien, im April 2009.

Dr. Robert Resel, e. h.